Public Economics (ECON 131)
 Section \#8: Public Goods

Contents

Page
1 Key Concepts 1
2 Practice Problems 2
2.1 Gruber, Ch.7, Q. 13 2
2.2 Gruber, Ch.7, Q. 15 4
2.3 Gruber, Ch.7, Q. 12 5

1 Key Concepts

- What are the definitions of good rivalry and excludability?
- Are public goods non-rival and/or non-excludable?
- How do you achieve the Social Demand Curve (or Social Marginal Benefit Curve) from individual demand curves?
- What does the Samuelson Rule say?
- Why is there a Free Rider Problem with public goods?
- Why is there Private Underprovision of public goods?
- What is the link with the free rider problem?

2 Practice Problems

2.1 Gruber, Ch.7, Q. 13

The town of Springfield has two residents: Homer and Bart. The town currently funds its fire department solely from the individual contributions of these residents. Each of the two residents has a utility function over private goods (X_{i}) and total firefighters (M) of the form $U_{i}=4 \cdot \log \left(X_{i}\right)+$ $2 \cdot \log (M)$, where $i=B, H$. The total provision of firefighters hired, M , is the sum of the number hired by each of the two persons: $M=M_{H}+M_{B}$. Homer and Bart both have income of \$100, and the price of both the private good and a firefighter is $\$ 1$. Thus, they are limited to providing between 0 and 100 firefighters.
(a) How many firefighters are hired if the government does not intervene? How many are paid for by Homer? By Bart?
(b) What is the socially optimal number of firefighters? If your answer differs from part (a), why?

2.2 Gruber, Ch.7, Q. 15

Consider an economy with three types of individuals, differing only with respect to their preferences for monuments. Individuals of the first type get a fixed benefit of 100 from the mere existence of monuments, whatever their number. Individuals of the second and third type get benefits according to $B_{I I}=200+30 \mathrm{M}-$ $1.5 M^{2}$ and $B_{I I I}=150+90 M-4.5 M^{2}$, where M denotes the number of monuments in the city. Assume that there are 50 people of each type. Monuments cost $\$ 3,600$ each to build. How many monuments should be built?

2.3 Gruber, Ch.7, Q. 12

Andrew, Beth, and Cathy live in Lindhville. Andrew's demand for bike paths, a public good, is given by $Q=12-2 P$. Beth's demand is $Q=18-P$, and Cathy's is $Q=8-P / 3$. The marginal cost of building a bike path is $M C=21$. The town government decides to use the following procedure for deciding how many paths to build. It asks each resident how many paths they want, and it builds the largest number asked for by any resident. To pay for these paths, it then taxes Andrew, Beth, and Cathy the prices a, b, and c per path, respectively, where $a+b+c=M C$. (The residents know these tax rates before stating how many paths they want.)
(a) If the taxes are set so that each resident shares the cost evenly $(a=b=c)$, how many paths will get built?
(b) Show that the government can achieve the social optimum by setting the correct tax prices a, b, and c. What prices should it set?

